back
Get SIGNAL/NOISE in your inbox daily

AI’s brute force era nears its end: Gartner analysts predict a shift away from specialized AI hardware, including GPUs, as more efficient programming techniques emerge.

The big picture: Gartner’s chief of research for AI, Erick Brethenoux, argues that the current reliance on powerful hardware for AI workloads is temporary, with generative AI applications likely to follow historical patterns of optimization.

  • Brethenoux draws on 45 years of AI observation, noting that specialized AI hardware has consistently been rendered obsolete as standard machines become capable of handling AI tasks.
  • The current “brute force” phase of AI is characterized by unrefined programming techniques requiring powerful hardware, which Brethenoux suggests is unsustainable in the long term.

Generative AI’s limited scope: Despite dominating discussions, generative AI is applicable to only a small fraction of use cases, according to Gartner’s analysis.

  • Brethenoux estimates that generative AI accounts for 90% of AI-related discourse but only 5% of actual use cases.
  • Many organizations have reverted to established AI techniques or are exploring “composite AI” solutions that combine generative AI with traditional methods like machine learning and knowledge graphs.

Reframing AI’s business value: Companies are reassessing the role of AI in their operations, recognizing the importance of existing AI applications that may have been overlooked.

  • The period from late 2022 to early 2024 saw many IT departments shift focus from profit-generating activities to exploring generative AI.
  • Organizations are now realizing that AI may already be contributing significantly to their business through less flashy but crucial applications, such as predictive maintenance.

Composite AI as a preferred approach: Gartner analysts recommend combining generative AI with established AI techniques for more reliable and efficient outcomes.

  • Examples of composite AI include using generative AI to create text descriptions for outputs from predictive maintenance applications or to generate prose recommendations based on firewall log analysis.
  • Bern Elliot, a Gartner vice president and distinguished analyst, emphasizes the importance of using generative AI alongside other AI methods to compensate for its limitations.

Cautionary notes on generative AI: Gartner experts highlight the technology’s limitations and potential risks.

  • Elliot points out that generative AI lacks reasoning capabilities and produces only probabilistic content sequences.
  • Despite improvements reducing “hallucinations” to 1-2% of outputs, the sheer volume of interactions in production environments can still result in millions of erroneous responses.
  • Experts recommend implementing guardrails using non-generative AI techniques to validate generative AI outputs.

Analyzing deeper: As the AI landscape evolves, organizations must carefully evaluate the appropriate applications for generative AI while leveraging existing AI investments. The shift away from specialized hardware suggests a future where AI becomes more integrated into standard computing infrastructure, potentially democratizing access to AI capabilities. However, the challenges of reliability and accuracy in generative AI outputs underscore the need for continued innovation in AI development and implementation strategies.

Recent Stories

Oct 17, 2025

DOE fusion roadmap targets 2030s commercial deployment as AI drives $9B investment

The Department of Energy has released a new roadmap targeting commercial-scale fusion power deployment by the mid-2030s, though the plan lacks specific funding commitments and relies on scientific breakthroughs that have eluded researchers for decades. The strategy emphasizes public-private partnerships and positions AI as both a research tool and motivation for developing fusion energy to meet data centers' growing electricity demands. The big picture: The DOE's roadmap aims to "deliver the public infrastructure that supports the fusion private sector scale up in the 2030s," but acknowledges it cannot commit to specific funding levels and remains subject to Congressional appropriations. Why...

Oct 17, 2025

Tying it all together: Credo’s purple cables power the $4B AI data center boom

Credo, a Silicon Valley semiconductor company specializing in data center cables and chips, has seen its stock price more than double this year to $143.61, following a 245% surge in 2024. The company's signature purple cables, which cost between $300-$500 each, have become essential infrastructure for AI data centers, positioning Credo to capitalize on the trillion-dollar AI infrastructure expansion as hyperscalers like Amazon, Microsoft, and Elon Musk's xAI rapidly build out massive computing facilities. What you should know: Credo's active electrical cables (AECs) are becoming indispensable for connecting the massive GPU clusters required for AI training and inference. The company...

Oct 17, 2025

Vatican launches Latin American AI network for human development

The Vatican hosted a two-day conference bringing together 50 global experts to explore how artificial intelligence can advance peace, social justice, and human development. The event launched the Latin American AI Network for Integral Human Development and established principles for ethical AI governance that prioritize human dignity over technological advancement. What you should know: The Pontifical Academy of Social Sciences, the Vatican's research body for social issues, organized the "Digital Rerum Novarum" conference on October 16-17, combining academic research with practical AI applications. Participants included leading experts from MIT, Microsoft, Columbia University, the UN, and major European institutions. The conference...