back
Get SIGNAL/NOISE in your inbox daily

Tesla’s innovative networking solution for AI training: Tesla has developed a new networking protocol called Tesla Transport Protocol over Ethernet (TTPoE) to address the high bandwidth and low latency requirements of its Dojo supercomputer for AI training in automotive applications.

  • TTPoE is designed to replace TCP (Transmission Control Protocol) in Tesla’s supercomputing environment, offering microsecond-scale latency and simple hardware offload capabilities.
  • The protocol runs over standard Ethernet switches, maintaining compatibility with existing network infrastructure while optimizing performance for AI workloads.

Key features of TTPoE: The new protocol simplifies traditional TCP processes to reduce latency and improve efficiency in high-performance computing environments.

  • Connection establishment and termination are streamlined, reducing the number of transmissions required and eliminating wait states.
  • The protocol is designed to be handled entirely in hardware, which makes it transparent to software and potentially faster than standard TCP implementations.
  • Congestion control is simplified, using a fixed-size SRAM buffer instead of TCP’s dynamic congestion window, optimized for the low-latency, low-packet-loss environment of a supercomputer network.

Hardware implementation: Tesla has created a custom hardware solution to implement TTPoE efficiently.

  • A hardware block called the TPP MAC is placed between the chip and standard Ethernet hardware, incorporating CPU-like design features for efficient packet handling.
  • The TPP MAC includes a 1 MB transmit SRAM buffer, capable of tolerating about 80 microseconds of network latency without significant bandwidth loss.
  • This implementation is part of what Tesla calls a “Dumb-NIC” (Network Interface Card), designed to be cost-effective for large-scale deployment in host nodes feeding the Dojo supercomputer.

Mojo: Expanding Dojo’s capabilities: Tesla has introduced Mojo, a system to increase the data ingestion capabilities of the Dojo supercomputer.

  • Mojo cards incorporate the TPP MAC, a host chip with PCIe Gen 3 x16 interface, and 8 GB of DDR4 memory.
  • These cards are installed in remote host machines, allowing Tesla to scale up bandwidth by adding more hosts to the network as needed.
  • The use of slightly older technologies like PCIe Gen 3 and DDR4 helps keep costs down while still meeting performance requirements.

Implications for supercomputing and networking: Tesla’s approach offers insights into potential optimizations for high-performance computing networks.

  • The simplification of TCP for use in a controlled, high-quality network environment demonstrates how established protocols can be adapted for specific use cases.
  • While TTPoE is not suitable for general internet use due to its fixed congestion window, it showcases how custom protocols can enhance performance in specialized environments.
  • Compared to other supercomputing network solutions like InfiniBand, Tesla’s Ethernet-based approach may provide a more cost-effective way to meet the bandwidth needs of AI training workloads.

Looking ahead: Tesla’s TTPoE and Mojo implementations represent a novel approach to addressing the unique networking challenges posed by AI training in automotive applications.

  • As AI workloads continue to demand ever-increasing amounts of data and computing power, we may see more custom networking solutions emerge in the supercomputing space.
  • The balance between performance optimization and cost-effectiveness demonstrated by Tesla’s approach could influence future developments in high-performance computing infrastructure.
  • While TTPoE is currently specific to Tesla’s needs, the concepts behind it may inspire similar optimizations in other specialized computing environments where traditional TCP might be a bottleneck.

Recent Stories

Oct 17, 2025

DOE fusion roadmap targets 2030s commercial deployment as AI drives $9B investment

The Department of Energy has released a new roadmap targeting commercial-scale fusion power deployment by the mid-2030s, though the plan lacks specific funding commitments and relies on scientific breakthroughs that have eluded researchers for decades. The strategy emphasizes public-private partnerships and positions AI as both a research tool and motivation for developing fusion energy to meet data centers' growing electricity demands. The big picture: The DOE's roadmap aims to "deliver the public infrastructure that supports the fusion private sector scale up in the 2030s," but acknowledges it cannot commit to specific funding levels and remains subject to Congressional appropriations. Why...

Oct 17, 2025

Tying it all together: Credo’s purple cables power the $4B AI data center boom

Credo, a Silicon Valley semiconductor company specializing in data center cables and chips, has seen its stock price more than double this year to $143.61, following a 245% surge in 2024. The company's signature purple cables, which cost between $300-$500 each, have become essential infrastructure for AI data centers, positioning Credo to capitalize on the trillion-dollar AI infrastructure expansion as hyperscalers like Amazon, Microsoft, and Elon Musk's xAI rapidly build out massive computing facilities. What you should know: Credo's active electrical cables (AECs) are becoming indispensable for connecting the massive GPU clusters required for AI training and inference. The company...

Oct 17, 2025

Vatican launches Latin American AI network for human development

The Vatican hosted a two-day conference bringing together 50 global experts to explore how artificial intelligence can advance peace, social justice, and human development. The event launched the Latin American AI Network for Integral Human Development and established principles for ethical AI governance that prioritize human dignity over technological advancement. What you should know: The Pontifical Academy of Social Sciences, the Vatican's research body for social issues, organized the "Digital Rerum Novarum" conference on October 16-17, combining academic research with practical AI applications. Participants included leading experts from MIT, Microsoft, Columbia University, the UN, and major European institutions. The conference...