×
Sora AI video goes viral for being creepy — here’s why these anomalies happen
Written by
Published on
Join our daily newsletter for breaking news, product launches and deals, research breakdowns, and other industry-leading AI coverage
Join Now

OpenAI’s Sora AI video generator produced a surreal and technically flawed video of a gymnast performing impossible movements, including sprouting extra limbs and temporarily losing her head during what was meant to be an Olympic-style floor routine.

Technical breakdown of the issue: The video synthesis errors stem from Sora’s fundamental approach to generating content through statistical associations rather than true understanding of physics or human anatomy.

  • Sora creates videos by analyzing training data that pairs video footage with text descriptions
  • The system makes continuous next-frame predictions based on the previous frame
  • While Sora attempts to maintain coherency by looking ahead at multiple frames, it struggles with rapid movements and complex physics

Training data limitations: The model’s performance is directly tied to the quantity and quality of its training examples.

  • The system relies on AI-generated labels to describe training videos
  • Limited gymnastics footage in the training data leads to inconsistent predictions
  • Complex movements prove especially challenging due to insufficient examples of precise limb-level movements

Industry perspective: This phenomenon extends beyond just Sora to other AI video generators.

  • Runway’s Gen-3 and Hunyuan Video face similar challenges with complex movements
  • These issues emerge when prompts exceed the boundaries of the model’s training data
  • The problems highlight the imitative nature of transformer-based AI models

Technical terminology: Industry experts have begun referring to these AI-generated anomalies as “jabberwockies” – nonsensical outputs that fail to produce plausible results, distinct from mere hallucinations or confabulations.

  • The term derives from Lewis Carroll’s nonsense poetry
  • These errors represent complete failures in generating coherent output
  • Similar issues have appeared in various AI video applications, from commercials to celebrity deepfakes

Future developments: Improvement in AI video generation will require significant advances in several areas.

  • Massive amounts of well-labeled training data
  • Increased computational power for processing
  • Better understanding and implementation of physics rules
  • More sophisticated approaches to maintaining consistency across frames

Looking ahead: While current limitations in AI video generation are evident, the technology’s rapid evolution suggests significant improvements are likely, though true physics-based “world simulation” remains a distant goal. The progression may mirror the development of AI image generation, which advanced from abstract shapes to highly realistic imagery in a relatively short time.

Twirling body horror in gymnastics video exposes AI’s flaws

Recent News

AI agents reshape digital workplaces as Moveworks invests heavily

AI agents evolve from chatbots to task-completing digital coworkers as Moveworks launches comprehensive platform for enterprise-ready agent creation, integration, and deployment.

McGovern Institute at MIT celebrates a quarter century of brain science research

MIT's McGovern Institute marks 25 years of translating brain research into practical applications, from CRISPR gene therapy to neural-controlled prosthetics.

Agentic AI transforms hiring practices in recruitment industry

AI recruitment tools accelerate candidate matching and reduce bias, but require human oversight to ensure effective hiring decisions.