×
Geekbench Has a New Benchmark to Evaluate Devices for AI Workloads
Written by
Published on
Join our daily newsletter for breaking news, product launches and deals, research breakdowns, and other industry-leading AI coverage
Join Now

New benchmark for AI capabilities: Geekbench has introduced Geekbench AI, a cross-platform tool designed to evaluate device performance specifically for AI workloads across various hardware components and software frameworks.

  • The benchmark assesses the performance of CPUs, GPUs, and NPUs (Neural Processing Units) in handling machine learning applications.
  • It provides a comprehensive evaluation based on both accuracy and speed, offering insights into how well devices can execute AI tasks.
  • Geekbench AI supports multiple frameworks, including ONNX, CoreML, TensorFlow Lite, and OpenVINO, ensuring compatibility with a wide range of AI development environments.

Performance metrics and scoring: The tool offers a nuanced approach to measuring AI performance by providing three distinct scores and an accuracy assessment.

  • Users receive scores for full precision, half precision, and quantized workloads, reflecting different computational approaches in AI processing.
  • The accuracy measurement compares a workload’s outputs to expected results, providing a crucial metric for real-world AI application performance.
  • This multi-faceted scoring system allows for a more comprehensive understanding of a device’s AI capabilities beyond raw processing power.

Wide platform support: Geekbench AI is designed to be a versatile benchmarking solution across the technology ecosystem.

  • The tool is available for major desktop operating systems including Windows, macOS, and Linux.
  • Mobile platforms are also supported, with versions for Android and iOS devices.
  • This broad availability enables consistent performance comparisons across different device types and operating systems.

Evolution from previous versions: Geekbench AI represents an evolution of the company’s efforts in AI benchmarking.

  • The tool was previously known as Geekbench ML when it was in preview in 2021.
  • The rebranding and official launch suggest refinements and improvements based on feedback and testing from the preview period.

Implications for the tech industry: The introduction of Geekbench AI could have significant impacts on how AI performance is measured and compared across the industry.

  • This standardized benchmark may influence how manufacturers design and market their AI-capable hardware, potentially driving innovation in AI processing capabilities.
  • For consumers and businesses, the tool could provide valuable insights when making purchasing decisions for AI-intensive applications.
  • The benchmark’s focus on both speed and accuracy aligns with the growing importance of AI in real-world applications, where both factors are critical for successful deployment.
Geekbench has an AI benchmark now

Recent News

AI agents and the rise of Hybrid Organizations

Meta makes its improved AI image generator free to use while adding visible watermarks and daily limits to prevent misuse.

Adobe partnership brings AI creativity tools to Box’s content management platform

Box users can now access Adobe's AI-powered editing tools directly within their secure storage environment, eliminating the need to download files or switch between platforms.

Nvidia’s new ACE platform aims to bring more AI to games, but not everyone’s sold

Gaming companies are racing to integrate AI features into mainstream titles, but high hardware requirements and artificial interactions may limit near-term adoption.