back
Get SIGNAL/NOISE in your inbox daily

Fusion energy breakthrough on the horizon: Carnegie Mellon University (CMU) and Princeton are collaborating on a groundbreaking project to harness nuclear fusion as a clean, safe, and abundant energy source.

  • The Nuclear Fusion Project, funded by the Department of Energy, brings together experts from CMU’s Robotics Institute, Machine Learning Department, and Princeton Plasma Physics Lab.
  • This initiative aims to overcome the challenges of controlling nuclear fusion reactions using artificial intelligence (AI) and machine learning algorithms.
  • Unlike nuclear fission, which is currently used in power plants, fusion does not produce long-term radioactive waste, making it a potentially safer and cleaner energy alternative.

The science behind nuclear fusion: Fusion energy mimics the process that powers the sun and stars, offering the potential for virtually limitless clean energy production.

  • Nuclear fusion occurs when two atoms collide to form a heavier atom, releasing enormous amounts of energy in the process.
  • The most promising method for achieving controlled fusion on Earth involves using a tokamak reactor, where hydrogen is superheated into a plasma state.
  • Magnetic fields are used to contain the plasma in a donut shape while it is heated to the extreme temperatures and pressures required for fusion.

AI’s crucial role in fusion research: The project leverages artificial intelligence to address the complex challenges of controlling plasma behavior in fusion reactors.

  • Jeff Schneider, a research professor at CMU’s Robotics Institute, explains that the dynamics of the fusion process are non-linear and unstable.
  • AI algorithms are being developed to learn these dynamics and create controllers capable of making rapid, real-time adjustments to maintain plasma stability.
  • This application of AI to fusion research represents a significant advancement in the field, potentially bringing fusion energy closer to practical realization.

Recent experimental success: The research team has already achieved promising results in their efforts to control plasma instabilities using AI-driven techniques.

  • In June, the team conducted experiments at the DIII-D National Fusion Facility in San Diego, focusing on preventing a plasma instability known as a tearing mode.
  • By employing machine learning algorithms and a targeted heating method similar to microwave technology, they successfully reduced the occurrence of tearing modes.
  • A paper detailing these groundbreaking results is currently in preparation, highlighting the potential of AI in overcoming longstanding challenges in fusion research.

Future directions and implications: With renewed funding from the Department of Energy, the research team is poised to continue pushing the boundaries of fusion energy research.

  • The next phase of experiments will explore the use of reinforcement learning to control key aspects of plasma behavior, further advancing the field.
  • CMU’s involvement in this research positions the university as a leader in global nuclear fusion research, contributing to a potentially world-changing energy solution.
  • Successful development of fusion energy could have far-reaching implications for addressing global challenges such as climate change, water scarcity, and food distribution.

Analyzing deeper: The path to practical fusion energy: While these advancements are promising, it’s important to consider the remaining challenges and broader context of fusion energy development.

  • The successful control of plasma instabilities represents a significant step forward, but many technical hurdles remain before fusion can become a practical energy source.
  • The integration of AI into fusion research may accelerate progress, but it’s crucial to manage expectations about the timeline for commercially viable fusion power.
  • As this research continues, it will be essential to consider the economic and regulatory frameworks needed to support the eventual deployment of fusion energy technology.

Recent Stories

Oct 17, 2025

DOE fusion roadmap targets 2030s commercial deployment as AI drives $9B investment

The Department of Energy has released a new roadmap targeting commercial-scale fusion power deployment by the mid-2030s, though the plan lacks specific funding commitments and relies on scientific breakthroughs that have eluded researchers for decades. The strategy emphasizes public-private partnerships and positions AI as both a research tool and motivation for developing fusion energy to meet data centers' growing electricity demands. The big picture: The DOE's roadmap aims to "deliver the public infrastructure that supports the fusion private sector scale up in the 2030s," but acknowledges it cannot commit to specific funding levels and remains subject to Congressional appropriations. Why...

Oct 17, 2025

Tying it all together: Credo’s purple cables power the $4B AI data center boom

Credo, a Silicon Valley semiconductor company specializing in data center cables and chips, has seen its stock price more than double this year to $143.61, following a 245% surge in 2024. The company's signature purple cables, which cost between $300-$500 each, have become essential infrastructure for AI data centers, positioning Credo to capitalize on the trillion-dollar AI infrastructure expansion as hyperscalers like Amazon, Microsoft, and Elon Musk's xAI rapidly build out massive computing facilities. What you should know: Credo's active electrical cables (AECs) are becoming indispensable for connecting the massive GPU clusters required for AI training and inference. The company...

Oct 17, 2025

Vatican launches Latin American AI network for human development

The Vatican hosted a two-day conference bringing together 50 global experts to explore how artificial intelligence can advance peace, social justice, and human development. The event launched the Latin American AI Network for Integral Human Development and established principles for ethical AI governance that prioritize human dignity over technological advancement. What you should know: The Pontifical Academy of Social Sciences, the Vatican's research body for social issues, organized the "Digital Rerum Novarum" conference on October 16-17, combining academic research with practical AI applications. Participants included leading experts from MIT, Microsoft, Columbia University, the UN, and major European institutions. The conference...