×
New prompting technique drives deeper reasoning in AI through extensive internal monologues
Written by
Published on
Join our daily newsletter for breaking news, product launches and deals, research breakdowns, and other industry-leading AI coverage
Join Now

OpenAI’s latest experimental model has inspired a new prompting technique that encourages Large Language Models (LLMs) to engage in deeper contemplation before providing answers.

Core innovation: The technique introduces a structured approach that forces LLMs to demonstrate their reasoning process through extensive internal monologue before reaching conclusions.

  • The method draws inspiration from OpenAI’s o1 model, which employs reinforcement learning and test-time compute for enhanced reasoning
  • The approach requires models to generate at least 10,000 characters of contemplation
  • Output is structured using XML tags to separate the thinking process from final conclusions

Key methodology: The prompting strategy emphasizes thorough exploration and natural thought patterns over quick answers.

  • Models are instructed to avoid rushing to conclusions and instead explore multiple angles
  • The reasoning process must be broken down into simple, atomic steps
  • Uncertainty and revision of previous thoughts are explicitly encouraged
  • Dead ends and backtracking are viewed as valuable parts of the thinking process

Technical implementation: The prompt leverages the autoregressive nature of transformer-based LLMs to improve answer quality.

  • The extensive contemplation phase provides rich context for the final answer
  • Models express thoughts in a conversational internal monologue style
  • Short, simple sentences mirror natural human thought patterns
  • The process accommodates uncertainty and internal debate

Practical applications: Early testing suggests the technique’s effectiveness varies based on task complexity.

  • The method shows particular promise for intermediate to difficult problems
  • Simple tasks may not benefit significantly from the extended contemplation
  • The approach risks potential hallucination during the contemplation phase
  • The technique prioritizes thorough exploration over quick resolution

Future implications: While this prompting strategy shows promise for complex reasoning tasks, its real-world effectiveness will depend on how well it can balance the trade-off between computational overhead and improved answer quality. The approach also raises interesting questions about the relationship between artificial contemplation and decision-making quality in language models.

Contemplative LLMs: Anxiety is all you need?

Recent News

LinkedIn data reveals AI’s rise in the job market alongside growth in traditional service roles

Jobs data reveals unexpected mix of AI and service roles driving employment growth, as technology and human-centered positions show parallel demand.

Retailers plan major AI investments by 2025, Honeywell survey finds

Honeywell's latest survey reveals that over 80% of U.S. retailers plan to increase AI adoption in 2025, with 35% significantly expanding investments to enhance operations, workforce satisfaction, and customer experiences.

China’s open-source AI surge challenges U.S. tech leadership and global influence

China's embrace of open-source AI models is challenging U.S. technological leadership by fostering global adoption and dependencies on Chinese-developed technology.