back
Get SIGNAL/NOISE in your inbox daily

New research reveals a breakthrough method for detecting AI “hallucinations,” paving the way for more reliable artificial intelligence systems in the near future, although challenges remain in integrating this research into real-world applications.

Key Takeaways: The study, published in the peer-reviewed scientific journal Nature, describes a new algorithm that can detect AI confabulations, a specific type of hallucination, with approximately 79% accuracy:

  • Confabulations occur when an AI model generates inconsistent wrong answers to a factual question, as opposed to providing the same consistent wrong answer due to issues like problematic training data or structural failures in the model’s logic.
  • The researchers’ method involves asking a chatbot to provide multiple answers to the same prompt and then using a different language model to cluster those answers based on their meanings, calculating a “semantic entropy” score to determine the likelihood of confabulation.

The Methodology: The researchers’ approach to detecting confabulations is relatively straightforward, involving a few key steps:

  • First, a chatbot is asked to generate several answers (usually between five and 10) to the same prompt.
  • A different language model is then used to group the answers based on their meanings, even if the wording of each sentence differs.
  • The “semantic entropy” score is calculated, which measures how similar or different the meanings of each answer are. A high score indicates a higher likelihood of confabulation, while a low score suggests the model is providing consistent answers.

Potential Applications and Limitations: While the research shows promise for improving AI reliability, experts caution against overestimating its immediate impact:

  • The method could potentially allow OpenAI to add a feature to ChatGPT that provides users with a certainty score for answers, increasing confidence in the results’ accuracy.
  • However, integrating this research into deployed chatbots may prove challenging, and the extent to which it can be successfully incorporated remains unclear.
  • As AI models become more capable, they will be used for increasingly difficult tasks where failure might be more likely, creating an ongoing boundary between what people want to use them for and what they can reliably accomplish.

Analyzing Deeper: Although the new method represents a significant step forward in detecting AI confabulations, it is essential to recognize that hallucinations encompass several categories of errors beyond just confabulations. While rates of hallucinations have been declining with the release of better models, the problem is unlikely to disappear entirely in the short to medium term. As AI capabilities expand, so too will the complexity of the tasks they are asked to perform, potentially leading to new types of errors and failures. Addressing AI hallucinations will require a combination of technical advancements and a deeper understanding of the sociological factors driving the use and expectations of these systems.

Recent Stories

Oct 17, 2025

DOE fusion roadmap targets 2030s commercial deployment as AI drives $9B investment

The Department of Energy has released a new roadmap targeting commercial-scale fusion power deployment by the mid-2030s, though the plan lacks specific funding commitments and relies on scientific breakthroughs that have eluded researchers for decades. The strategy emphasizes public-private partnerships and positions AI as both a research tool and motivation for developing fusion energy to meet data centers' growing electricity demands. The big picture: The DOE's roadmap aims to "deliver the public infrastructure that supports the fusion private sector scale up in the 2030s," but acknowledges it cannot commit to specific funding levels and remains subject to Congressional appropriations. Why...

Oct 17, 2025

Tying it all together: Credo’s purple cables power the $4B AI data center boom

Credo, a Silicon Valley semiconductor company specializing in data center cables and chips, has seen its stock price more than double this year to $143.61, following a 245% surge in 2024. The company's signature purple cables, which cost between $300-$500 each, have become essential infrastructure for AI data centers, positioning Credo to capitalize on the trillion-dollar AI infrastructure expansion as hyperscalers like Amazon, Microsoft, and Elon Musk's xAI rapidly build out massive computing facilities. What you should know: Credo's active electrical cables (AECs) are becoming indispensable for connecting the massive GPU clusters required for AI training and inference. The company...

Oct 17, 2025

Vatican launches Latin American AI network for human development

The Vatican hosted a two-day conference bringing together 50 global experts to explore how artificial intelligence can advance peace, social justice, and human development. The event launched the Latin American AI Network for Integral Human Development and established principles for ethical AI governance that prioritize human dignity over technological advancement. What you should know: The Pontifical Academy of Social Sciences, the Vatican's research body for social issues, organized the "Digital Rerum Novarum" conference on October 16-17, combining academic research with practical AI applications. Participants included leading experts from MIT, Microsoft, Columbia University, the UN, and major European institutions. The conference...