back
Get SIGNAL/NOISE in your inbox daily

Oxford researchers have developed a method to identify when large language models (LLMs) are confabulating, or making up false information, which could help prevent the spread of misinformation as these AI systems become more widely used.

Key Takeaways: The researchers’ approach focuses on evaluating the semantic entropy of an LLM’s potential answers to determine if it is uncertain about the correct response:

  • If many of the statistically likely answers are semantically equivalent, the LLM is probably just uncertain about phrasing and has the correct information.
  • If the potential answers are semantically diverse, the LLM is likely confabulating due to a lack of certainty about the facts.

Understanding Confabulation: Confabulation occurs when LLMs confidently present false information, often due to several factors:

  • The AI may have been trained on misinformation or lacks the ability to properly extrapolate from known facts.
  • LLMs are compelled to provide an answer even when they don’t recognize what constitutes a correct response, leading them to make things up.

Significance of the Research: As LLMs are increasingly relied upon for various tasks, identifying instances of confabulation is crucial to prevent the spread of false information:

  • The Oxford team’s method works across popular LLM models and a wide range of subjects, making it broadly applicable.
  • Their research suggests that most of the false information provided by LLMs is a result of confabulation rather than other factors like training on inaccurate data.

Broader Implications: The ability to detect confabulation in LLMs has significant implications for the responsible deployment of these AI systems:

  • Identifying when an LLM is making things up can help prevent the spread of misinformation and ensure that users are not misled by false answers.
  • This research highlights the importance of developing methods to assess the reliability and accuracy of LLM-generated content as these systems become more integrated into various applications and decision-making processes.

However, it is important to note that this research focuses specifically on confabulation and does not address other sources of false information in LLMs, such as training on inaccurate data. Additionally, while the proposed method can help identify instances of confabulation, it does not provide a complete solution for ensuring the reliability of LLM-generated content. Further research and development of techniques to improve the accuracy and robustness of these AI systems will be essential as they continue to be adopted in real-world applications.

Recent Stories

Oct 17, 2025

DOE fusion roadmap targets 2030s commercial deployment as AI drives $9B investment

The Department of Energy has released a new roadmap targeting commercial-scale fusion power deployment by the mid-2030s, though the plan lacks specific funding commitments and relies on scientific breakthroughs that have eluded researchers for decades. The strategy emphasizes public-private partnerships and positions AI as both a research tool and motivation for developing fusion energy to meet data centers' growing electricity demands. The big picture: The DOE's roadmap aims to "deliver the public infrastructure that supports the fusion private sector scale up in the 2030s," but acknowledges it cannot commit to specific funding levels and remains subject to Congressional appropriations. Why...

Oct 17, 2025

Tying it all together: Credo’s purple cables power the $4B AI data center boom

Credo, a Silicon Valley semiconductor company specializing in data center cables and chips, has seen its stock price more than double this year to $143.61, following a 245% surge in 2024. The company's signature purple cables, which cost between $300-$500 each, have become essential infrastructure for AI data centers, positioning Credo to capitalize on the trillion-dollar AI infrastructure expansion as hyperscalers like Amazon, Microsoft, and Elon Musk's xAI rapidly build out massive computing facilities. What you should know: Credo's active electrical cables (AECs) are becoming indispensable for connecting the massive GPU clusters required for AI training and inference. The company...

Oct 17, 2025

Vatican launches Latin American AI network for human development

The Vatican hosted a two-day conference bringing together 50 global experts to explore how artificial intelligence can advance peace, social justice, and human development. The event launched the Latin American AI Network for Integral Human Development and established principles for ethical AI governance that prioritize human dignity over technological advancement. What you should know: The Pontifical Academy of Social Sciences, the Vatican's research body for social issues, organized the "Digital Rerum Novarum" conference on October 16-17, combining academic research with practical AI applications. Participants included leading experts from MIT, Microsoft, Columbia University, the UN, and major European institutions. The conference...