×
Researchers Use Search Algorithms to Improve LLM Planning Capabilities
Written by
Published on
Join our daily newsletter for breaking news, product launches and deals, research breakdowns, and other industry-leading AI coverage
Join Now

Breakthrough in LLM planning: Researchers from Cornell University and IBM Research have introduced AutoToS, a novel technique that combines the planning capabilities of large language models (LLMs) with the efficiency of rule-based search algorithms.

  • AutoToS addresses key challenges in LLM-based planning, including computational expense and reliability issues.
  • The new approach eliminates the need for human intervention and significantly reduces the computational cost of solving complex planning problems.
  • This innovation makes AutoToS a promising solution for LLM applications that require reasoning over extensive solution spaces.

The evolution of LLM-based planning: AutoToS builds upon previous techniques, such as Tree of Thoughts, while overcoming their limitations and introducing new efficiencies.

  • Earlier methods often required numerous LLM calls, making them computationally expensive for complex problems with thousands of possible solutions.
  • These approaches also lacked guarantees for completeness and soundness in their algorithms.
  • AutoToS leverages LLMs to generate code for crucial search algorithm components: the successor function and the goal function.
  • This approach allows for the use of offline search algorithms, greatly improving efficiency compared to keeping the LLM involved throughout the search process.

Automating the process: AutoToS improves upon its predecessor, Thought of Search (ToS), by removing the need for human expert feedback and intervention.

  • The system employs unit tests, debugging statements, and few-shot and chain-of-thought prompting techniques to automate feedback and exception handling.
  • AutoToS follows a multi-step process to generate, test, and refine code for the successor and goal functions.
  • The algorithm iterates through this process until the generated functions pass all tests, ensuring reliability and accuracy.

Performance and evaluation: Researchers tested AutoToS on various planning and reasoning tasks, demonstrating its effectiveness across different LLM families and model sizes.

  • The system was evaluated using tasks such as BlocksWorld, Mini Crossword, and the 24 Game.
  • Tests included LLMs from GPT-4, Llama 2, and DeepSeek Coder families, using both large and small models.
  • Results showed that all models could identify and correct errors in their code when given feedback.
  • Larger models generally produced correct goal functions without feedback and required fewer iterations to refine the successor function.
  • Surprisingly, even smaller models like GPT-4o-mini performed well in terms of accuracy.

Efficiency gains: AutoToS significantly reduces the number of LLM calls required for planning tasks, resulting in substantial improvements in speed and resource utilization.

  • For the 24 Game dataset with 1,362 puzzles, AutoToS required an average of only 2.2 LLM calls to generate sound search components.
  • In comparison, previous approaches would call GPT-4 approximately 100,000 times for the same dataset.
  • Using standard breadth-first search (BFS) with AutoToS-generated components, all 1,362 games were solved in under 2 seconds with 100% accuracy.

Enterprise applications: AutoToS holds significant potential for improving planning-based solutions in enterprise settings.

  • The technique reduces costs associated with LLM usage and minimizes reliance on manual labor.
  • It enables experts to focus on high-level planning and goal specification rather than code refinement.
  • AutoToS can accelerate both the development and deployment of planning-based solutions in various industries.

Neuro-symbolic AI and future directions: AutoToS represents a step forward in the field of neuro-symbolic AI, combining the strengths of deep learning and rule-based systems.

  • This hybrid approach is gaining traction as a promising direction for addressing limitations in current AI systems.
  • Researchers are exploring how LLMs’ world knowledge can improve planning and acting in real-world environments.
  • The integration of planning tools with LLMs opens up new possibilities for intelligent agents and decision-making workflows.

Implications for AI development: AutoToS demonstrates the potential for combining LLM capabilities with traditional AI techniques to create more efficient and reliable systems.

  • This approach could lead to the development of more sophisticated AI agents capable of complex reasoning and planning tasks.
  • The success of AutoToS highlights the importance of continuing research into hybrid AI systems that leverage the strengths of multiple approaches.
  • As LLMs and planning tools become more integrated, we may see significant advancements in AI’s ability to handle real-world decision-making scenarios.
AutoToS makes LLM planning fast, accurate and inexpensive

Recent News

7 ways to optimize your business for ChatGPT recommendations

Companies must adapt their digital strategy with specific expertise, consistent information across platforms, and authoritative content to appear in AI-powered recommendation results.

Robin Williams’ daughter Zelda slams OpenAI’s Ghibli-style images amid artistic and ethical concerns

Robin Williams' daughter condemns OpenAI's AI-generated Ghibli-style images, highlighting both environmental costs and the contradiction with Miyazaki's well-documented opposition to artificial intelligence in creative work.

AI search tools provide wrong answers up to 60% of the time despite growing adoption

Independent testing reveals AI search tools frequently provide incorrect information, with error rates ranging from 37% to 94% across major platforms despite their growing popularity as Google alternatives.