×
How to Regulate Generative AI to Benefit the Healthcare Industry
Written by
Published on
Join our daily newsletter for breaking news, product launches and deals, research breakdowns, and other industry-leading AI coverage
Join Now

The rise of generative AI in medicine: Generative AI’s emergence in healthcare poses unique regulatory challenges for the Food and Drug Administration (FDA) and global regulators, requiring a novel approach distinct from traditional drug and device regulation.

  • The FDA’s usual process of reviewing new drugs and devices for safety and efficacy before market entry is not suitable for generative AI applications in healthcare.
  • Regulators need to conceptualize large language models (LLMs) as novel forms of intelligence, necessitating an approach more akin to how clinicians are regulated.
  • This new regulatory framework is crucial for maximizing the clinical benefits of generative AI while minimizing potential risks.

Current regulatory landscape: The traditional FDA approval process for drugs and devices serves two primary purposes that are not easily applicable to generative AI in healthcare.

  • It protects the public from unsafe and ineffective treatments and diagnostic tools.
  • It aids health professionals in deciding whether and how to incorporate new technologies into their practice.

Unique challenges of regulating generative AI: The nature of generative AI technology presents distinct regulatory hurdles that traditional approaches cannot adequately address.

  • Unlike static drugs or devices, generative AI systems are dynamic and continuously evolving, making point-in-time assessments less relevant.
  • The outputs of generative AI can vary widely depending on the input and context, making standardized safety and efficacy evaluations challenging.
  • The rapid pace of AI development outstrips the typically slower regulatory processes, potentially leading to outdated regulations by the time they’re implemented.

Proposed regulatory approach: To effectively regulate generative AI in healthcare, the FDA should consider adopting strategies similar to those used for overseeing medical professionals.

  • Implement a system of ongoing monitoring and evaluation, rather than a one-time approval process.
  • Develop guidelines for the ethical use of AI in clinical settings, similar to professional codes of conduct for healthcare providers.
  • Establish mechanisms for continuous learning and improvement, allowing AI systems to be updated and refined based on real-world performance and outcomes.

Potential benefits and risks: A well-designed regulatory framework for generative AI in healthcare could unlock significant benefits while mitigating potential dangers.

  • Benefits may include improved diagnostic accuracy, personalized treatment recommendations, and more efficient healthcare delivery.
  • Risks could involve AI-generated errors in diagnosis or treatment, privacy concerns related to patient data, and potential biases in AI algorithms.

Stakeholder collaboration: Effective regulation of generative AI in healthcare will require input and cooperation from various stakeholders.

  • Healthcare providers, AI developers, patient advocacy groups, and policymakers should be involved in shaping the regulatory approach.
  • International collaboration may be necessary to develop consistent global standards for AI in healthcare.

Looking ahead: Balancing innovation and safety: The regulation of generative AI in healthcare presents an opportunity to create a forward-thinking framework that fosters innovation while prioritizing patient safety.

  • Regulators must strike a delicate balance between enabling technological advancements and ensuring adequate safeguards are in place.
  • The evolving nature of AI technology will likely necessitate an adaptive regulatory approach that can keep pace with rapid developments in the field.
  • As generative AI becomes more prevalent in healthcare, ongoing research and evaluation will be crucial to understanding its long-term impacts and refining regulatory strategies accordingly.
How to Regulate Generative AI in Healthcare

Recent News

This journalist used AI to turn a 3rd grade journal into an engaging podcast

A writer's AI-powered conversion of childhood diaries into podcast format reveals both promising educational applications and current technological shortcomings in document analysis.

Photo-editing startup Lightricks just released an open-source AI video generator

Photo editing company Lightricks releases an open-source AI video generator that runs on consumer hardware, challenging the closed systems of major tech companies.

YouTube’s new feature creates AI-generated backgrounds for your videos

YouTube's new AI video background generator aims to help creators produce professional-looking Shorts without expensive equipment or studio space.